skip to main content


Search for: All records

Creators/Authors contains: "Xiong, Peixi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There are two main challenges in Visual Question Answering (VQA). The first one is that each model obtains its strengths and shortcomings when applied to several questions; what is more, the “ceiling effect” for specific questions is difficult to overcome with simple consecutive training. The second challenge is that even the state-of-the-art dataset is of large scale, questions targeted at a single image are off in format and lack diversity in content. We introduce our self-questioning model with multi-agent training: TA-student VQA. This framework differs from standard VQA algorithms by involving question generating mechanisms and collaborative learning between question answering agents. Thus, TA-student VQA overcomes the limitation of the content diversity and format variation of questions and improves the overall performance of multiple question-answering agents. We evaluate our model on VQA-v2 [1], which outperforms algorithms without such mechanisms. In addition, TA-student VQA achieves a greater model capacity, allowing it to answer more generated questions in addition to those in the annotated datasets. 
    more » « less
  2. null (Ed.)
  3. Visual Query Answering (VQA) is of great significance in offering people convenience: one can raise a question for details of objects, or high-level understanding about the scene, over an image. This paper proposes a novel method to address the VQA problem. In contrast to prior works, our method that targets single scene VQA, replies on graph-based techniques and involves reasoning. In a nutshell, our approach is centered on three graphs. The first graph, referred to as inference graph GI , is constructed via learning over labeled data. The other two graphs, referred to as query graph Q and entity-attribute graph GEA, are generated from natural language query Qnl and image Img, that are issued from users, respectively. As GEA often does not take sufficient information to answer Q, we develop techniques to infer missing information of GEA with GI . Based on GEA and Q, we provide techniques to find matches of Q in GEA, as the answer of Qnl in Img. Unlike commonly used VQA methods that are based on end-to-end neural networks, our graph-based method shows well-designed reasoning capability, and thus is highly interpretable. We also create a dataset on soccer match (Soccer-VQA) with rich annotations. The experimental results show that our approach outperforms the state-of-the-art method and has high potential for future investigation. 
    more » « less